login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320295
Number of series-reduced rooted trees whose leaves are non-singleton integer partitions whose multiset union is an integer partition of n.
5
0, 1, 2, 5, 8, 19, 34, 80, 165, 394, 892, 2192, 5232, 13057, 32271, 81568, 205748, 525735, 1344828, 3467415, 8960849, 23280323, 60639680, 158559047, 415631368, 1092734050, 2879420753, 7605713020, 20130266302, 53386744298, 141836904569, 377479973474, 1006189769886
OFFSET
1,3
COMMENTS
Also phylogenetic trees with no singleton leaves on integer partitions of n.
LINKS
EXAMPLE
The a(2) = 1 through a(6) = 19 trees:
(11) (21) (22) (32) (33)
(111) (31) (41) (42)
(211) (221) (51)
(1111) (311) (222)
((11)(11)) (2111) (321)
(11111) (411)
((11)(12)) (2211)
((11)(111)) (3111)
(21111)
(111111)
((11)(13))
((11)(22))
((12)(12))
((11)(112))
((12)(111))
((11)(1111))
((111)(111))
((11)(11)(11))
((11)((11)(11)))
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
pgtm[m_]:=Prepend[Join@@Table[Union[Sort/@Tuples[pgtm/@p]], {p, Select[mps[m], Length[#]>1&]}], m];
Table[Sum[Length[Select[pgtm[m], FreeQ[#, {_}]&]], {m, IntegerPartitions[n]}], {n, 14}]
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(p=1/prod(k=1, n, 1 - x^k + O(x*x^n)), v=vector(n)); for(n=1, n, v[n]=polcoef(p, n) - 1 + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 09 2018
EXTENSIONS
Terms a(12) and beyond from Andrew Howroyd, Oct 25 2018
STATUS
approved