%I #8 Oct 25 2018 22:22:13
%S 0,1,2,5,8,19,34,80,165,394,892,2192,5232,13057,32271,81568,205748,
%T 525735,1344828,3467415,8960849,23280323,60639680,158559047,415631368,
%U 1092734050,2879420753,7605713020,20130266302,53386744298,141836904569,377479973474,1006189769886
%N Number of series-reduced rooted trees whose leaves are non-singleton integer partitions whose multiset union is an integer partition of n.
%C Also phylogenetic trees with no singleton leaves on integer partitions of n.
%H Andrew Howroyd, <a href="/A320295/b320295.txt">Table of n, a(n) for n = 1..500</a>
%e The a(2) = 1 through a(6) = 19 trees:
%e (11) (21) (22) (32) (33)
%e (111) (31) (41) (42)
%e (211) (221) (51)
%e (1111) (311) (222)
%e ((11)(11)) (2111) (321)
%e (11111) (411)
%e ((11)(12)) (2211)
%e ((11)(111)) (3111)
%e (21111)
%e (111111)
%e ((11)(13))
%e ((11)(22))
%e ((12)(12))
%e ((11)(112))
%e ((12)(111))
%e ((11)(1111))
%e ((111)(111))
%e ((11)(11)(11))
%e ((11)((11)(11)))
%t sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t pgtm[m_]:=Prepend[Join@@Table[Union[Sort/@Tuples[pgtm/@p]],{p,Select[mps[m],Length[#]>1&]}],m];
%t Table[Sum[Length[Select[pgtm[m],FreeQ[#,{_}]&]],{m,IntegerPartitions[n]}],{n,14}]
%o (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
%o seq(n)={my(p=1/prod(k=1, n, 1 - x^k + O(x*x^n)), v=vector(n)); for(n=1, n, v[n]=polcoef(p, n) - 1 + EulerT(v[1..n])[n]); v} \\ _Andrew Howroyd_, Oct 25 2018
%Y Cf. A000311, A000669, A005804, A141268, A302545, A304966, A319312, A320289, A320294.
%K nonn
%O 1,3
%A _Gus Wiseman_, Oct 09 2018
%E Terms a(12) and beyond from _Andrew Howroyd_, Oct 25 2018