login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318498
Denominators of the sequence whose Dirichlet convolution with itself yields A061389, number of (1+phi)-divisors of n.
4
1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 8, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 8, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 16, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 8, 8, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 8, 1, 2, 2, 4, 1, 1, 1, 1, 1
OFFSET
1,4
COMMENTS
The sequence seems to give the denominators of a few other similarly constructed rational valued sequences obtained as "Dirichlet Square Roots" (of possibly A092520 and A293443).
LINKS
FORMULA
a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A061389(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
a(n) = 2^A318499(n).
PROG
(PARI)
up_to = 65537;
A061389(n) = factorback(apply(e -> (1+eulerphi(e)), factor(n)[, 2]));
DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
v318497_98 = DirSqrt(vector(up_to, n, A061389(n)));
A318497(n) = numerator(v318497_98[n]);
A318498(n) = denominator(v318497_98[n]);
CROSSREFS
Cf. A061389, A318497 (numerators), A318499.
Cf. also A299150, A046644.
Sequence in context: A370077 A370080 A372331 * A093997 A157196 A300410
KEYWORD
nonn,frac
AUTHOR
Antti Karttunen, Aug 30 2018
STATUS
approved