login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157196 a(n)=(1/2)*(sum of elements of n-th run) using 1 and 2 starting with 1,1. 0
1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

We conjecture the density of 1 in the sequence approaches 2/3 as n-->infinity.

LINKS

Table of n, a(n) for n=1..105.

EXAMPLE

Write the sums of elements in each run, you obtain: 2,2,4,2,2,2,2,4,2,2,4,2,2,4,4,... dividing by 2 you get: 1,1,2,1,1,1,1,2,1,1,2,1,1,2,2,... the sequence itself.

MAPLE

mx:= 1000: l:= [1$2]: a:= n-> l[n]:

for h from 2 while nops(l)<mx do

  t:= 2-irem(h, 2); l:= [l[], t$(l[h]*2/t)]

od:

seq (a(n), n=1..120);  # Alois P. Heinz, May 31 2012

CROSSREFS

Cf. A000002, A157129.

Sequence in context: A263723 A318498 A093997 * A300410 A293451 A063014

Adjacent sequences:  A157193 A157194 A157195 * A157197 A157198 A157199

KEYWORD

nonn

AUTHOR

Benoit Cloitre, Feb 24 2009

EXTENSIONS

More terms from Alvin Hoover Belt, May 31 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 26 11:22 EDT 2021. Contains 347665 sequences. (Running on oeis4.)