The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A300410 Number of centered square numbers dividing n. 3
 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 Eric Weisstein's World of Mathematics, Centered Square Number FORMULA G.f.: Sum_{k>=0} x^(2*k*(k+1)+1)/(1 - x^(2*k*(k+1)+1)). EXAMPLE a(26) = 2 because 26 has 4 divisors {1, 2, 13, 26} among which 2 divisors {1, 13} are centered square numbers. MAPLE N:= 100: # for a(1)..a(N) V:= Vector(N, 1): for k from 1 do   m:= 2*k*(k+1)+1;   if m > N then break fi;   r:= [seq(i, i=m..N, m)];   V[r]:= map(t->t+1, V[r]); od: convert(V, list); # Robert Israel, Mar 05 2018 MATHEMATICA nmax = 100; Rest[CoefficientList[Series[Sum[x^(2 k (k + 1) + 1)/(1 - x^(2 k (k + 1) + 1)), {k, 0, nmax}], {x, 0, nmax}], x]] CROSSREFS Cf. A001844, A046951, A279496, A300409. Sequence in context: A318498 A093997 A157196 * A293451 A063014 A286361 Adjacent sequences:  A300407 A300408 A300409 * A300411 A300412 A300413 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Mar 05 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 07:08 EDT 2021. Contains 347554 sequences. (Running on oeis4.)