login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300410
Number of centered square numbers dividing n.
5
1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3
OFFSET
1,5
FORMULA
G.f.: Sum_{k>=0} x^(2*k*(k+1)+1)/(1 - x^(2*k*(k+1)+1)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A228048 = 1.440659... . - Amiram Eldar, Jan 02 2024
EXAMPLE
a(26) = 2 because 26 has 4 divisors {1, 2, 13, 26} among which 2 divisors {1, 13} are centered square numbers.
MAPLE
N:= 100: # for a(1)..a(N)
V:= Vector(N, 1):
for k from 1 do
m:= 2*k*(k+1)+1;
if m > N then break fi;
r:= [seq(i, i=m..N, m)];
V[r]:= map(t->t+1, V[r]);
od:
convert(V, list); # Robert Israel, Mar 05 2018
MATHEMATICA
nmax = 100; Rest[CoefficientList[Series[Sum[x^(2 k (k + 1) + 1)/(1 - x^(2 k (k + 1) + 1)), {k, 0, nmax}], {x, 0, nmax}], x]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 05 2018
STATUS
approved