login
A362845
Number of divisors of 7*n-2 of form 7*k+1.
0
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 3, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 3, 1, 1, 1, 2, 2, 3, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 5, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 3, 1, 1
OFFSET
1,6
COMMENTS
Also number of divisors of 7*n-2 of form 7*k+5.
FORMULA
a(n) = A279061(7*n-2) = A363807(7*n-2).
G.f.: Sum_{k>0} x^(5*k-4)/(1 - x^(7*k-6)).
G.f.: Sum_{k>0} x^k/(1 - x^(7*k-2)).
MATHEMATICA
a[n_] := DivisorSum[7*n - 2, 1 &, Mod[#, 7] == 1 &]; Array[a, 100] (* Amiram Eldar, Jun 25 2023 *)
PROG
(PARI) a(n) = sumdiv(7*n-2, d, d%7==1);
CROSSREFS
Sequence in context: A093997 A157196 A300410 * A293451 A063014 A286361
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 24 2023
STATUS
approved