|
|
A362848
|
|
a(n) = Sum_{k=0..n} 4^k * Gamma(n + k + 1/2) / Gamma(n - k + 1/2). Row sums of A362847.
|
|
1
|
|
|
1, 4, 121, 11376, 2165689, 689873284, 330204013569, 221470234531456, 198160750081637521, 228040136335670652324, 328106086348844570538409, 577082259304437657893671984, 1218130815379359944856599793801, 3039062974890293661892991548863076
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{k=0..n} (2*(n + k) - 1)!! / (2*(n - k) - 1)!!. - Detlef Meya, Oct 09 2023
|
|
MATHEMATICA
|
a[n_]:= Sum[(2*(n+k)-1)!!/(2*(n-k)-1)!!, {k, 0, n}]; Flatten[Table[a[n], {n, 0, 13}]] (* Detlef Meya, Oct 09 2023 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|