login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157129
An analog of the Kolakoski sequence A000002, only now a(n) = (length of n-th run divided by 2) using 1 and 2 and starting with 1,1.
2
1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2
OFFSET
1,3
FORMULA
As for the Kolakoski sequence we suspect Sum_{k=1..n} a(k) = (3/2)*n + o(n).
a(n) = A071928(n)/2. - Jon Maiga, Jun 04 2021
a(n) = gcd(A284796(ceiling(n/2)), 2) (conjectured). - Jon Maiga, Jun 11 2021
EXAMPLE
The third run is 1,1,1,1, which is of length 4, thus a(3) = 4/2 = 2.
PROG
(PARI) w=[1, 1]; for(n=2, 1000, for(i=1, 2*w[n], w=concat(w, 1+(n+1)%2))); w \\ Corrected by Kevin Ryde and Jon Maiga, Jun 11 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Feb 23 2009
STATUS
approved