

A308884


Follow along the squares in the square spiral (as in A274641); in each square write the smallest nonnegative number that a knight placed at that square cannot see.


15



0, 0, 0, 0, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 3, 3, 2, 0, 1, 3, 2, 1, 0, 3, 3, 3, 2, 0, 1, 3, 3, 1, 0, 0, 0, 3, 3, 0, 0, 0, 2, 1, 3, 3, 0, 0, 0, 2, 2, 3, 2, 0, 0, 0, 2, 1, 3, 3, 1, 2, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 2, 2, 1, 3, 2, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 2, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,8


COMMENTS

Similar to A274641, except that here we consider the mex of squares that are a knight's moves rather than queen's moves.
Since there are at most 4 earlier cells in the spiral at a knight's move from any square, a(n) <= 4.


LINKS



EXAMPLE

A knight at square 0 cannot see any numbers, so a(0)=0. Similarly a(1)=a(2)=a(3)=0.
A knight at square 4 in the spiral can see the 0 in square 1 (because square 1 is a knight's move from square 4), so a(4) = 1. Similarly a(5)=a(6)=1.
A knight at square 7 can see a(2)=0 and a(4)=1, so a(7) = mex{0,1} = 2.
And so on. See the illustration for the start of the spiral.


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



