The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A157198 Integers n such that by inserting between their digits + or - or * or / or ^ or nothing (i.e., concatenate two digits) you recover n back in a nontrivial way. 0
 736, 2502, 2592, 11664, 15613, 15617, 15618, 15622, 15624, 15632, 15642, 15645, 15656, 15662, 15667, 15698, 16875, 17536, 19453, 26364, 27639, 32785, 34425, 35721, 39283, 39343, 39363, 39369, 45947, 46630 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS 736 = 7+3^6 2502 = 2+50^2 2592 = 2^5*9^2 11664 = 1*1*6^6/4 15613 = 1+5^6-13 15617 = 1*5^6-1-7 15618 = 1*5^6+1-8 15622 = 1+5^6-2*2 15624 = 1+5^6+2-4 15632 = 1+5^6+3*2 15642 = 1+5^6+4^2 15645 = 1*5^6+4*5 15656 = 1+5*6+5^6 15662 = 1+5^6+6^2 15667 = 1*5^6+6*7 15698 = 1+5^6+9*8 16875 = 1*68+7^5 17536 = 1*7^5+3^6 19453 = 19*4^5-3 26364 = 26^3*6/4 27639 = 2^7*6^3-9 32785 = 3+2*7+8^5 34425 = 3^4*425 35721 = 3^5*7*21 39283 = 3^9*2-83 39343 = 39+34^3 39363 = 3^9/3*6-3 39369 = 3+9^3*6*9 45947 = 4*5+9^4*7 46630 = 4+6^6-30 46633 = 4+6^6-3^3 46644 = 4+6^6-4*4 46648 = 4*6^6/4-8 46655 = 4+6*6^5-5 46660 = 4+6^6*6^0 46663 = 4+6+6^6-3 117476 = 1-174+7^6 117576 = 1+1-75+7^6 117625 = 1*1+7^6-25 117630 = 11+7^6-30 117633 = 11+7^6-3^3 117635 = 1*1+7^6-3*5 117638 = 1*1*7^6-3-8 117639 = 1+1+7^6-3-9 117642 = 1*1+7^6-4*2 117643 = 1*1+7^6-4-3 117644 = 11+7^6-4*4 117647 = 1*1+7^6+4-7 117648 = 11+7^6-4-8 117650 = 1*1*7^6+5^0 117652 = 1*1*7^6+5-2 117653 = 1+1+7^6+5-3 117660 = 11+7^6*6^0 117662 = 1*1+7^6+6*2 117663 = 11+7^6+6-3 117695 = 1*1+7^6+9*5 117763 = 117+7^6-3 156250 = 1*5^6*2*5+0 156251 = 1*5^6*2*5+1 156252 = 1*5^6*2*5+2 156253 = 1*5^6*2*5+3 156254 = 1*5^6*2*5+4 156255 = 1*5^6*2*5+5 156256 = 1*5^6*2*5+6 156257 = 1*5^6*2*5+7 156258 = 1*5^6*2*5+8 156259 = 1*5^6*2*5+9 186622 = 1*8*6^6/2-2 186624 = 1*8*6^6*2/4 186641 = 18+6^6*4-1 234224 = 2-34+22^4 Terms like 59052 = 5+9^05-2 or 125003 = 1+2+50^03 have been removed. From Zak Seidov, Feb 27 2009: (Start) Sequence is infinite. Trivial pattern: 1562500 = 1*5^6*2*50+0 1562501 = 1*5^6*2*50+1 1562502 = 1*5^6*2*50+2 1562503 = 1*5^6*2*50+3 1562504 = 1*5^6*2*50+4 1562505 = 1*5^6*2*50+5 1562506 = 1*5^6*2*50+6 1562507 = 1*5^6*2*50+7 1562508 = 1*5^6*2*50+8 1562509 = 1*5^6*2*50+9 15625000 = 1*5^6*2*500+0, etc. (End) LINKS Table of n, a(n) for n=1..30. CROSSREFS Sequence in context: A324260 A121342 A067866 * A156954 A231034 A004078 Adjacent sequences: A157195 A157196 A157197 * A157199 A157200 A157201 KEYWORD base,nonn AUTHOR Jean-Marc Falcoz, Feb 24 2009 EXTENSIONS Name corrected by Jean-Marc Falcoz, Mar 24 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 17:21 EDT 2024. Contains 375017 sequences. (Running on oeis4.)