OFFSET
1,1
COMMENTS
The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
LINKS
EXAMPLE
5467 is the Heinz number of (20,5,4) and 1/20 + 1/5 + 1/4 = 1/2, so 5467 belongs to the sequence.
The sequence of partitions whose Heinz numbers belong to this sequence begins: (1), (6,3,2), (6,4,4,3), (20,5,4), (12,4,3,3), (15,10,3), (24,8,3), (10,5,5,2)
MATHEMATICA
Select[Range[2, 100000], And[GCD@@PrimePi/@FactorInteger[#][[All, 1]]==1, IntegerQ[1/Sum[m[[2]]/PrimePi[m[[1]]], {m, FactorInteger[#]}]]]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 16 2018
STATUS
approved