login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A316901
Heinz numbers of integer partitions into relatively prime parts whose reciprocal sum is the reciprocal of an integer.
0
2, 195, 3185, 5467, 6475, 6815, 8455, 10527, 15385, 16401, 17719, 20445, 20535, 21045, 25365, 28897, 40001, 46155, 49841, 50431, 54677, 92449, 101543, 113849, 123469, 137731, 156883, 164255, 171941, 185803, 218855, 228085, 230347, 261457, 267883, 274261
OFFSET
1,1
COMMENTS
The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
5467 is the Heinz number of (20,5,4) and 1/20 + 1/5 + 1/4 = 1/2, so 5467 belongs to the sequence.
The sequence of partitions whose Heinz numbers belong to this sequence begins: (1), (6,3,2), (6,4,4,3), (20,5,4), (12,4,3,3), (15,10,3), (24,8,3), (10,5,5,2)
MATHEMATICA
Select[Range[2, 100000], And[GCD@@PrimePi/@FactorInteger[#][[All, 1]]==1, IntegerQ[1/Sum[m[[2]]/PrimePi[m[[1]]], {m, FactorInteger[#]}]]]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 16 2018
STATUS
approved