login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143659
Number of perfect matchings of the (2n+1) X (2n+1) grid H_n with a central unit hole.
1
1, 2, 196, 75272, 599466256, 28838245503008, 22463213552677201984, 123818965842734619629420672, 9830731407624872890044690474098944, 6011432546485776316904414215762657381908992
OFFSET
0,2
FORMULA
a(n) = A270668(n,n). - Alois P. Heinz, Mar 21 2016
EXAMPLE
The number of perfect matchings of the (2n+1) X (2n+1) grid H_n with a central unit hole does not seem to factor into a product of small primes. We have the following prime factorizations: a(1) = M(H_1) = 2. a(2) = M(H_2) = 196 = 2^2 * 7^2. a(3) = M(H_3) = 75272 = 2^3 * 97^2. a(4) = M(H_4) = 599466256 = 2^4 * 6121^2. a(5) = M(H_5) = 28838245503008 = 2^5 * 31^2 * 113^2 * 271^2. a(6) = M(H_6) = 22463213552677201984 = 2^6 * 592442159^2. a(7) = M(H_7) = 123818965842734619629420672 = 2^7 * 7417^2 * 132605129^2. a(8) = M(H_8) = 2^8 * 4481^2 * 8513^2 * 9929^2 * 16361^2.
a(9) = M(H_9) = 6011432546485776316904414215762657381908992 = 2^9 * 4639^2 * 23357676333902111^2. a(10) = M(H_10) = 49438198985375823847222358907915781467506320590324736 = 2^10 * 7^2 * 73^2 * 191^2 * 479^2 * 51151^2 * 2905610745223^2. a(11) = M(H_11) = 3302685794941188104245211026600715429110809533132141649177479168 = 2^11 * 1033^2 * 1049^2 * 1663^2 * 166151^2 * 4241286739685449^2. a(12) = M(H_12) = 2836223684393795085092141247901684583089503537241007344342697156002091831296 = 2^12 * 41^2 * 137^2 * 7057^2 * 20992575527970355281835400921^2.
CROSSREFS
Main diagonal of A270668.
Sequence in context: A316901 A316888 A316890 * A282700 A256410 A174367
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Aug 28 2008
EXTENSIONS
a(0)=1 from Alois P. Heinz, Mar 21 2016
STATUS
approved