login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309732
Expansion of Sum_{k>=1} k^2 * x^k/(1 - x^k)^3.
4
1, 7, 15, 38, 40, 108, 77, 188, 180, 290, 187, 600, 260, 560, 630, 888, 442, 1323, 551, 1620, 1218, 1364, 805, 3024, 1325, 1898, 1998, 3136, 1276, 4680, 1457, 4080, 2970, 3230, 3290, 7470, 2072, 4028, 4134, 8200, 2542, 9072, 2795, 7656, 7830, 5888, 3337, 14496, 4998, 9825, 7038
OFFSET
1,2
COMMENTS
Dirichlet convolution of triangular numbers (A000217) with squares (A000290).
a(n) is n times half m, where m is the sum of all parts plus the total number of parts of the partitions of n into equal parts. - Omar E. Pol, Nov 30 2019
LINKS
FORMULA
G.f.: Sum_{k>=1} (k*(k + 1)/2) * x^k * (1 + x^k)/(1 - x^k)^3.
a(n) = n * (n * d(n) + sigma(n))/2.
Dirichlet g.f.: zeta(s-2) * (zeta(s-2) + zeta(s-1))/2.
a(n) = n*(A038040(n) + A000203(n))/2 = n*A152211(n)/2. - Omar E. Pol, Aug 17 2019
a(n) = Sum_{k=1..n} k*sigma(gcd(n,k)). - Ridouane Oudra, Nov 28 2019
MAPLE
with(numtheory): seq(n*(n*tau(n)+sigma(n))/2, n=1..50); # Ridouane Oudra, Nov 28 2019
MATHEMATICA
nmax = 51; CoefficientList[Series[Sum[k^2 x^k/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[DirichletConvolve[j (j + 1)/2, j^2, j, n], {n, 1, 51}]
Table[n (n DivisorSigma[0, n] + DivisorSigma[1, n])/2, {n, 1, 51}]
PROG
(PARI) a(n)=sumdiv(n, d, binomial(n/d+1, 2)*d^2); \\ Andrew Howroyd, Aug 14 2019
(PARI) a(n)=n*(n*numdiv(n) + sigma(n))/2; \\ Andrew Howroyd, Aug 14 2019
(Magma) [n*(n*NumberOfDivisors(n) + DivisorSigma(1, n))/2:n in [1..51]]; // Marius A. Burtea, Nov 29 2019
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 14 2019
STATUS
approved