OFFSET
1,2
COMMENTS
a(n) is n times half m, where m is the sum of all parts plus the total number of parts of the partitions of n into equal parts. - Omar E. Pol, Nov 30 2019
LINKS
Marius A. Burtea, Table of n, a(n) for n = 1..10000
FORMULA
G.f.: Sum_{k>=1} (k*(k + 1)/2) * x^k * (1 + x^k)/(1 - x^k)^3.
a(n) = n * (n * d(n) + sigma(n))/2.
Dirichlet g.f.: zeta(s-2) * (zeta(s-2) + zeta(s-1))/2.
a(n) = Sum_{k=1..n} k*sigma(gcd(n,k)). - Ridouane Oudra, Nov 28 2019
MAPLE
with(numtheory): seq(n*(n*tau(n)+sigma(n))/2, n=1..50); # Ridouane Oudra, Nov 28 2019
MATHEMATICA
nmax = 51; CoefficientList[Series[Sum[k^2 x^k/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[DirichletConvolve[j (j + 1)/2, j^2, j, n], {n, 1, 51}]
Table[n (n DivisorSigma[0, n] + DivisorSigma[1, n])/2, {n, 1, 51}]
PROG
(PARI) a(n)=sumdiv(n, d, binomial(n/d+1, 2)*d^2); \\ Andrew Howroyd, Aug 14 2019
(PARI) a(n)=n*(n*numdiv(n) + sigma(n))/2; \\ Andrew Howroyd, Aug 14 2019
(Magma) [n*(n*NumberOfDivisors(n) + DivisorSigma(1, n))/2:n in [1..51]]; // Marius A. Burtea, Nov 29 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 14 2019
STATUS
approved