login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309729
Expansion of Sum_{k>=1} x^k/(1 - x^k - 2*x^(2*k)).
1
1, 2, 4, 7, 12, 26, 44, 92, 175, 354, 684, 1396, 2732, 5506, 10938, 21937, 43692, 87578, 174764, 349884, 699098, 1398786, 2796204, 5593886, 11184823, 22372354, 44739418, 89483996, 178956972, 357925242, 715827884, 1431677702, 2863312218, 5726666754, 11453246178, 22906581193
OFFSET
1,2
COMMENTS
Inverse Moebius transform of Jacobsthal numbers (A001045).
FORMULA
G.f.: Sum_{k>=1} A001045(k) * x^k/(1 - x^k).
a(n) = (1/3) * Sum_{d|n} (2^d - (-1)^d).
MAPLE
seq(add(2^d-(-1)^d, d=numtheory:-divisors(n))/3, n=1..50); # Robert Israel, Aug 14 2019
MATHEMATICA
nmax = 36; CoefficientList[Series[Sum[x^k/(1 - x^k - 2 x^(2 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[(1/3) Sum[(2^d - (-1)^d), {d, Divisors[n]}], {n, 1, 36}]
PROG
(PARI) a(n)={sumdiv(n, d, 2^d - (-1)^d)/3} \\ Andrew Howroyd, Aug 14 2019
(Python)
n = 1
while n <= 36:
s, d = 0, 1
while d <= n:
if n%d == 0:
s = s+2**d-(-1)**d
d = d+1
print(n, s//3)
n = n+1 # A.H.M. Smeets, Aug 14 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 14 2019
STATUS
approved