login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309730
Expansion of Sum_{k>=1} x^k * (1 - x^(3*k))/(1 - x^k)^4.
1
1, 5, 11, 24, 32, 61, 65, 109, 120, 172, 167, 279, 236, 343, 358, 470, 410, 630, 515, 762, 706, 865, 761, 1193, 933, 1216, 1174, 1497, 1220, 1850, 1397, 1959, 1762, 2098, 1882, 2739, 2000, 2629, 2470, 3188, 2462, 3614, 2711, 3723, 3438, 3871, 3245, 4939, 3594, 4749, 4246, 5214
OFFSET
1,2
COMMENTS
Inverse Moebius transform of centered triangular numbers (A005448).
LINKS
FORMULA
G.f.: Sum_{k>=1} (3*k*(k - 1)/2 + 1) * x^k/(1 - x^k).
a(n) = 3 * (sigma_2(n) - sigma_1(n))/2 + d(n).
From Amiram Eldar, Jan 02 2025: (Start)
Dirichlet g.f.: zeta(s) * (3 * zeta(s-2) - 3 * zeta(s-1) + 2 * zeta(s)) / 2.
Sum_{k=1..n} a(k) ~ (zeta(3)/2) * n^3. (End)
MATHEMATICA
nmax = 52; CoefficientList[Series[Sum[x^k (1 - x^(3 k))/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[3 (DivisorSigma[2, n] - DivisorSigma[1, n])/2 + DivisorSigma[0, n], {n, 1, 52}]
PROG
(PARI) a(n)={sumdiv(n, d, 3*d*(d-1)/2 + 1)} \\ Andrew Howroyd, Aug 14 2019
(PARI) a(n)={3*(sigma(n, 2) - sigma(n))/2 + numdiv(n)} \\ Andrew Howroyd, Aug 14 2019
KEYWORD
nonn,easy,changed
AUTHOR
Ilya Gutkovskiy, Aug 14 2019
STATUS
approved