|
|
A308243
|
|
Index of E-irregularity of prime(n).
|
|
1
|
|
|
0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 3, 1, 0, 1, 2, 2, 1, 1, 0, 1, 0, 3, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,59
|
|
COMMENTS
|
A prime p >= 5 is an E-irregular prime if there is an even integer 2*k such that 2 <= 2*k <= p-3 and p divides E(2*k), where E(i) is the i-th Euler number (A000364). The pair (p, 2*k) is called an E-irregular pair. The number of such pairs for a given p is called the index of E-irregularity of p (cf. Ernvall, Metsänkylä, 1978, p. 618).
In other words, a prime p is E-irregular if its index of E-irregularity is > 0, which is the case if p is a term of A092218. Otherwise, p is E-regular and is a term of A092217.
|
|
LINKS
|
|
|
PROG
|
a(n) = my(p=prime(n), e=2, i=0); while(e <= p-3, if(a000364(e)%p==0, i++); e=e+2); i
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|