OFFSET
1,4
FORMULA
Recurrence: a(n+1) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k+d)*d*a(d)^(k/d) ) * a(n-k+1).
MATHEMATICA
a[n_] := a[n] = SeriesCoefficient[x Product[1/(1 - a[k] (-x)^k)^((-1)^k), {k, 1, n - 1}], {x, 0, n}]; Table[a[n], {n, 1, 33}]
a[n_] := a[n] = Sum[Sum[(-1)^(k + d) d a[d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n - 1}]/(n - 1); a[1] = 1; Table[a[n], {n, 1, 33}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 16 2019
STATUS
approved