login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248890
Number of rooted trees with n nodes such that for each inner node no more than k subtrees corresponding to its children have exactly k nodes.
1
0, 1, 1, 1, 2, 4, 8, 16, 34, 75, 166, 374, 849, 1952, 4522, 10566, 24840, 58760, 139693, 333702, 800412, 1927207, 4655997, 11283835, 27423930, 66825194, 163227234, 399587270, 980222058, 2409181633, 5931839530, 14629639579, 36137308192, 89395224033
OFFSET
0,5
LINKS
EXAMPLE
: o : o : o : o o : o o o o :
: : | : | : / \ | : | / \ / \ | :
: : o : o : o o o : o o o o o o :
: : : | : | | : / \ | | | | :
: : : o : o o : o o o o o o :
: : : : | : | | | :
: : : : o : o o o :
: : : : : | :
: n=1 : n=2 : n=3 : n=4 : n=5 o :
:.....:.....:.....:...........:.......................:
MAPLE
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
binomial(g((i-1)$2)+j-1, j)*g(n-i*j, i-1), j=0..min(i, n/i))))
end:
a:= n-> g((n-1)$2):
seq(a(n), n=0..40);
MATHEMATICA
g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[g[i-1, i-1]+j-1, j]*g[n-i*j, i-1], {j, 0, Min[i, n/i]}]]]; a[n_] := g[n-1, n-1]; Table[ a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 28 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 05 2015
STATUS
approved