login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of rooted trees with n nodes such that for each inner node no more than k subtrees corresponding to its children have exactly k nodes.
1

%I #10 Feb 28 2017 12:08:20

%S 0,1,1,1,2,4,8,16,34,75,166,374,849,1952,4522,10566,24840,58760,

%T 139693,333702,800412,1927207,4655997,11283835,27423930,66825194,

%U 163227234,399587270,980222058,2409181633,5931839530,14629639579,36137308192,89395224033

%N Number of rooted trees with n nodes such that for each inner node no more than k subtrees corresponding to its children have exactly k nodes.

%H Alois P. Heinz, <a href="/A248890/b248890.txt">Table of n, a(n) for n = 0..1000</a>

%e : o : o : o : o o : o o o o :

%e : : | : | : / \ | : | / \ / \ | :

%e : : o : o : o o o : o o o o o o :

%e : : : | : | | : / \ | | | | :

%e : : : o : o o : o o o o o o :

%e : : : : | : | | | :

%e : : : : o : o o o :

%e : : : : : | :

%e : n=1 : n=2 : n=3 : n=4 : n=5 o :

%e :.....:.....:.....:...........:.......................:

%p g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(

%p binomial(g((i-1)$2)+j-1, j)*g(n-i*j, i-1), j=0..min(i, n/i))))

%p end:

%p a:= n-> g((n-1)$2):

%p seq(a(n), n=0..40);

%t g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[g[i-1, i-1]+j-1, j]*g[n-i*j, i-1], {j, 0, Min[i, n/i]}]]]; a[n_] := g[n-1, n-1]; Table[ a[n], {n, 0, 40}] (* _Jean-François Alcover_, Feb 28 2017, translated from Maple *)

%Y Cf. A000081, A032305, A045648, A213920.

%K nonn

%O 0,5

%A _Alois P. Heinz_, Mar 05 2015