login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213920
Number of rooted trees with n nodes such that no more than two subtrees corresponding to children of any node have the same number of nodes.
5
0, 1, 1, 2, 3, 7, 15, 34, 79, 190, 457, 1132, 2823, 7126, 18136, 46541, 120103, 312109, 815012, 2137755, 5632399, 14895684, 39519502, 105198371, 280815067, 751490363, 2016142768, 5420945437, 14604580683, 39425557103, 106618273626, 288792927325, 783516425820
OFFSET
0,4
COMMENTS
Coincides with A248869 up to a(9) = 190.
a(n+1)/a(n) tends to 2.845331... - Vaclav Kotesovec, Jun 04 2019
LINKS
EXAMPLE
: o : o : o o : o o o :
: : | : / \ | : | / \ | :
: : o : o o o : o o o o :
: : : | : / \ | | :
: : : o : o o o o :
: : : : | :
: n=1 : n=2 : n=3 : n=4 o :
:.....:.....:...........:.................:
: o o o o o o o :
: | | / \ / \ / \ /|\ | :
: o o o o o o o o o o o o :
: | / \ / \ | | | | | :
: o o o o o o o o o o :
: / \ | | | :
: o o o o o :
: | :
: n=5 o :
:.........................................:
MAPLE
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
binomial(g((i-1)$2)+j-1, j)*g(n-i*j, i-1), j=0..min(2, n/i))))
end:
a:= n-> g((n-1)$2):
seq(a(n), n=0..40);
MATHEMATICA
g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[g[i-1, i-1]+j-1, j]*g[n-i*j, i-1], {j, 0, Min[2, n/i]}]]]; a[n_] := g[n-1, n-1]; Table[ a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 21 2017, translated from Maple *)
CROSSREFS
Column k=2 of A318753.
Sequence in context: A358734 A198683 A001932 * A248869 A005909 A003006
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 05 2013
STATUS
approved