OFFSET
1,3
COMMENTS
Number of distinct values taken by phi^phi^...^phi (with n phi's and parentheses inserted in all possible ways), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vladimir Reshetnikov, Mar 05 2019
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. K. Guy and J. L. Selfridge, The nesting and roosting habits of the laddered parenthesis, Amer. Math. Monthly 80 (8) (1973), 868-876.
R. K. Guy and J. L. Selfridge, The nesting and roosting habits of the laddered parenthesis. (annotated cached copy)
MATHEMATICA
ClearAll[phi, t, a]; t[1] = {0}; t[n_Integer] := t[n] = DeleteDuplicates[Flatten[Table[Outer[phi^#1 + #2 &, t[k], t[n - k]], {k, n - 1}]] /. phi^k_Integer :> Fibonacci[k] phi + Fibonacci[k - 1]]; a[n_Integer] := a[n] = Length[t[n]]; Table[a[n], {n, 23}]
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
EXTENSIONS
a(10)-a(23) added by Vladimir Reshetnikov, Mar 05 2019
STATUS
approved