login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A328779
a(n) is the number of unlabeled unrooted trees (as in A000055) on n nodes with one designated node (exclusive) or one designated edge.
1
0, 1, 2, 3, 7, 15, 36, 85, 211, 525, 1341, 3449, 9001, 23671, 62835, 167881, 451557, 1221065, 3318737, 9059397, 24830110, 68299159, 188488448, 521737636, 1448154837, 4029712400, 11239492056, 31416403198, 87990722479, 246903542031, 694022911203, 1954012196966
OFFSET
0,3
LINKS
Mathematics Stack Exchange Counting free trees from rooted trees.
FORMULA
O.g.f.: R(x) + R(x)^2/2 + R(x^2)/2 where R(x) is the o.g.f. for A000081.
MAPLE
b:= proc(n) option remember; `if`(n<2, n, (add(b(n-j)*add(
d*b(d), d=numtheory[divisors](j)), j=1..n-1))/(n-1))
end:
a:= n-> b(n)+add(b(j)*b(n-j), j=0..n)/2+`if`(n::even, b(n/2)/2, 0):
seq(a(n), n=0..31); # Alois P. Heinz, Feb 17 2024
MATHEMATICA
nn = 25; f[x_] := Sum[a[n] x^n, {n, 0, nn}]; sol = SolveAlways[
0 == Series[f[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}], x];
r[x_] := Sum[a[n] x^n, {n, 0, nn}] /. sol; CoefficientList[Series[r[x] + r[x]^2/2 + r[x^2]/2, {x, 0, nn}], x]
CROSSREFS
Sequence in context: A003006 A052321 A114584 * A039826 A221547 A289471
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Jul 06 2020
STATUS
approved