OFFSET
0,4
COMMENTS
For 0 <= k <= n, T(n,k) is the coefficient of x^(2*k) in the matching polynomial of the n-ladder graph. We take T(0,0)=1.
LINKS
Robert Israel, Table of n, a(n) for n = 0..10010 (rows 0 to 140, flattened)
Eric Weisstein's World of Mathematics, Ladder Graph.
Eric Weisstein's World of Mathematics, Matching Polynomial.
FORMULA
EXAMPLE
Triangle begins
1
-1 1
2 -4 1
-3 11 -7 1
5 -26 29 -10 1
-8 56 -94 56 -13 1
13 -114 263 -234 92 -16 1
-21 223 -667 815 -473 137 -19 1
34 -424 1577 -2504 1982 -838 191 -22 1
MAPLE
g:= gfun:-rectoproc({a(n+3)+(-x^2+2)*a(n+2)+x^2*a(n+1)-a(n), a(0)=1, a(1)=x^2-1, a(2)=x^4-4*x^2+2}, a(n), remember):
for nn from 0 to 10 do
seq(coeff(g(nn), x, k), k=0..2*nn, 2)
od;
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Robert Israel, May 16 2019
STATUS
approved