login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092218
Primes that divide some Euler number.
7
5, 13, 17, 19, 29, 31, 37, 41, 43, 47, 53, 61, 67, 71, 73, 79, 89, 97, 101, 109, 113, 137, 139, 149, 157, 173, 181, 193, 197, 223, 229, 233, 241, 251, 257, 263, 269, 277, 281, 293, 307, 311, 313, 317, 337, 349, 353, 359, 373, 379, 389, 397, 401, 409, 419, 421
OFFSET
1,1
COMMENTS
For a prime p in this sequence, p will divide an Euler number E(k) for k < p. The density of these primes is approximately 0.66.
This sequence is the union of A002144 (primes of the form 4k+1) and A120115. Note that if prime p=1 (mod 4), then p divides E(p-1). - T. D. Noe, Jun 09 2006
LINKS
L. Carlitz, Note on irregular primes, Proc. Amer. Math. Soc. 5 (1954), 329-331
Eric Weisstein's World of Mathematics, Euler Number
MATHEMATICA
ee=Table[Abs[EulerE[2i]], {i, 500}]; t=Table[p=Prime[n]; cnt=0; Do[If[Mod[ee[[i]], p]==0, cnt++ ], {i, p}]; cnt, {n, PrimePi[500]}]; Prime[Select[Range[Length[t]], t[[ # ]]>0&]]
CROSSREFS
Cf. A000364 (Euler numbers), A092217 (primes that do not divide any Euler number), A092219.
Sequence in context: A282747 A088908 A327638 * A049092 A103666 A082700
KEYWORD
nonn
AUTHOR
T. D. Noe, Feb 25 2004
STATUS
approved