The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A092220 Expansion of x*(1-x)/ ((1+x)*(1-x+x^2)) in powers of x. 6
 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Multiplicative with a(2^e) = -1, a(3^e) = 0, a(p^e) = 1 otherwise. - David W. Wilson Jun 12 2005 Transform of the Jacobsthal numbers A001045 under the Riordan array A102587. - Paul Barry, Jul 14 2005 The BINOMIAL transform generates (-1)^(n+1)*A024495(n+1). - R. J. Mathar, Apr 07 2008 LINKS Index entries for linear recurrences with constant coefficients, signature (0,0,-1). FORMULA Euler transform of length 6 sequence [-1, 0, -1, 0, 0, 1]. - Michael Somos, Apr 10 2011 Moebius transform is length 6 sequence [1, -2, -1, 0, 0, 2]. - Michael Somos, Apr 10 2011 G.f.: x * (1 - x) * (1 - x^3) / (1 - x^6). - Michael Somos, Apr 10 2011 a(n) = a(-n), a(n + 3) = -a(n), a(3*n) = 0, for all n in Z. - Michael Somos, Apr 10 2011 a(n) = 2*cos(Pi*n/3)/3 - 2(-1)^n/3. a(n) = 3*a(n-1) - a(n-3) + 3*a(n-4). - Paul Curtz, Dec 10 2007 a(n) = (1/6)*((n mod 6)-2*((n+1) mod 6)+[(n+2) mod 6)-((n+3) mod 6)+2*((n+4) mod 6)-((n+5) mod 6)). - Paolo P. Lava, Feb 05 2008 a(n) = ( (-1)^floor((n+1)/3) - (-1)^n )/2. [Bruno Berselli, Jul 09 2013] a(n) = S(n-1,-1), n >= 0, with Chebyshev's S-polynomials evaluated at -1 (see A049310). - Wolfdieter Lang, Sep 06 2013 a(n) = A131531(n+2) - A131531(n+1) . - R. J. Mathar, Nov 28 2019 EXAMPLE G.f. = x - x^2 - x^4 + x^5 + x^7 - x^8 - x^10 + x^11 + x^13 - x^14 - x^16 + x^17 + ... MATHEMATICA a[ n_] := {1, -1, 0, -1, 1, 0}[[Mod[n, 6, 1]]]; (* Michael Somos, Aug 25 2014 *) LinearRecurrence[{0, 0, -1}, {0, 1, -1}, 120] (* or *) PadRight[{}, 120, {0, 1, -1, 0, -1, 1}] (* Harvey P. Dale, Mar 30 2016 *) PROG (PARI) {a(n) = [0, 1, -1, 0, -1, 1][n%6 + 1]}; /* Michael Somos, Apr 10 2011 */ CROSSREFS Sequence in context: A094217 A280261 A174784 * A011655 A102283 A128834 Adjacent sequences:  A092217 A092218 A092219 * A092221 A092222 A092223 KEYWORD sign,easy,mult AUTHOR Paul Barry, Feb 25 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 4 05:15 EDT 2020. Contains 333212 sequences. (Running on oeis4.)