login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120337
Euler-irregular primes p dividing E(2k) for some 2k < p-1.
10
19, 31, 43, 47, 61, 67, 71, 79, 101, 137, 139, 149, 193, 223, 241, 251, 263, 277, 307, 311, 349, 353, 359, 373, 379, 419, 433, 461, 463, 491, 509, 541, 563, 571, 577, 587, 619, 677, 691, 709, 739, 751, 761, 769, 773, 811, 821, 877, 887, 907, 929, 941, 967, 971, 983
OFFSET
1,1
COMMENTS
Conjecture (Ernvall and Metsänkylä, 1978): The asymptotic density of this sequence within the primes is 1 - 1/sqrt(e) = 0.393469... (A290506), the same as the corresponding conjectured density of the irregular primes (A000928). - Amiram Eldar, Dec 06 2022
LINKS
Reijo Ernvall, On the distribution mod 8 of the E-irregular primes, Annales Academiae Scientiarum Fennicae, Series A. I. Mathematica, Vol. 1, 1975, pp. 195-198.
Reijo Ernvall and Tauno Metsänkylä, Cyclotomic invariants and 𝐸-irregular primes, Mathematics of Computation, Vol. 32, No. 142 (1978), pp. 617-629; Corrigenda, ibid., Vol. 33, No. 145 (1979), p. 433.
Su Hu and Min-Soo Kim, A note on the irregular primes with respect to Euler polynomials, arXiv:1510.01558 [math.NT], 2015.
Su Hu, Min-Soo Kim, Pieter Moree and Min Sha, Irregular primes with respect to Genocchi numbers and Artin's primitive root conjecture, arXiv:1809.08431 [math.NT], 2018.
R. Mestrovic, A search for primes p such that Euler number E_{p-3} is divisible by p, arXiv preprint arXiv:1212.3602 [math.NT], 2012. - From N. J. A. Sloane, Jan 25 2013
Prime Pages, Euler Irregular
Samuel S. Wagstaff, Prime divisors of the Bernoulli and Euler numbers, Number theory for the millennium, III, 2002, pp. 357-374, 2002. MR 1956285.
FORMULA
The (trivial) divisors of E(2n) are given by the theorem of Sylvester (1861): Let p prime with p=1 (mod 4), p-1|2n, p^k|2n then p^{k+1} | E(2n).
EXAMPLE
a(1) = 19 because 19 divides E(10) = -19*2659 and 10 + 1 < 19.
MAPLE
A120337_list := proc(bound)
local ae, F, p, m, maxp; F := NULL;
for m from 2 by 2 to bound do
p := nextprime(m+1);
ae := abs(euler(m));
maxp := min(ae, bound);
while p <= maxp do
if ae mod p = 0
then F := F, p fi;
p := nextprime(p);
od;
od;
sort([F]) end: # Peter Luschny, Apr 25 2011
MATHEMATICA
fQ[p_] := Block[{k = 1}, While[ 2k +1 < p && Mod[ EulerE[ 2k], p] != 0, k++]; p > 2k +1]; Select[ Prime@ Range@ 168, fQ@# &] (* Robert G. Wilson v, Dec 10 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Stefan Krämer, Jun 22 2006
EXTENSIONS
Terms 251 through 983 from Peter Luschny, Apr 25 2011
STATUS
approved