|
|
A043298
|
|
Numbers n such that B(6*n) has denominator 42 where B(2k) are the Bernoulli numbers.
|
|
1
|
|
|
1, 19, 31, 43, 59, 67, 71, 79, 97, 109, 127, 139, 149, 157, 163, 167, 193, 197, 199, 211, 223, 227, 229, 269, 307, 317, 337, 349, 353, 361, 379, 383, 389, 401, 409, 421, 433, 439, 449, 457, 463, 479, 487, 499, 521, 523, 541, 547, 563, 569, 571, 587, 589, 599
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Except for 1 and 361=19^2 terms listed are primes.
Most a(n) are primes p such that 2p+1 is composite A053176. Nonprime a(n) (except a(1) = 1) are the powers or the products of primes from a(n). For example, 361 = 19^2, 589 = 19*31, 961 = 31^2, 1333 = 31*43, 1849 = 43^2, 2071 = 19*109, 2077 = 31*67, 2201 = 31*71, 2449 = 31*79, 2537 = 43*59, 2641 = 19*139, 2881 = 43*67, 2983 = 19*157, 3053 = 43*71, 3173 = 19*167, ..., 6859 = 19^3. - Alexander Adamchuk, Jul 28 2006
|
|
LINKS
|
Enrique Pérez Herrero, Table of n, a(n) for n=1..50000
|
|
MATHEMATICA
|
Do[s=1+Divisors[n]; s1=Flatten[Position[PrimeQ[s], True]]; s2=Part[s, s1]; If[Equal[s2, {2, 3, 7}], Print[n/6]], {n, 1, 10000}] (* Alexander Adamchuk, Jul 28 2006 *)
|
|
CROSSREFS
|
Cf. A051225, A053176.
Sequence in context: A120337 A120115 A157995 * A286313 A040068 A096787
Adjacent sequences: A043295 A043296 A043297 * A043299 A043300 A043301
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Benoit Cloitre, Mar 24 2002
|
|
EXTENSIONS
|
Corrected and extended by Ralf Stephan, Oct 21 2002
More terms from Alexander Adamchuk, Jul 28 2006
|
|
STATUS
|
approved
|
|
|
|