OFFSET
1,1
COMMENTS
Complement of A087634, primes p such that phi(k) = 4p has a solution, where phi is Euler's totient function.
The sequences a(n), A005384 and A023212 form a partition of the set of primes > 3: Using von Staudt-Clausen formula the divisors of 4p increased by 1 are {2,3,5,p+1,2p+1,4p+1}, p+1 is clearly an even number, and if 2p+1 and 4p+1 are not prime, then denom(B(4p))=30. - Enrique Pérez Herrero, Aug 15 2011
Also 2 with the primes p such that both 2*p+1 and 4*p+1 are composite: A210684. For these numbers k > 2 the equation: phi(n)=k*tau(n), where phi is A000010 and tau is A000005, has no solutions: A112954(a(n))=0. - Enrique Pérez Herrero, May 12 2012
LINKS
E. Pérez Herrero, Table of n, a(n) for n=1..30000
Wikipedia, Von Staudt-Clausen theorem
MATHEMATICA
Select[Prime[Range[100]], Denominator[BernoulliB[4# ]]==30&] (* T. D. Noe, Feb 19 2004 *)
Select[Prime[Range[100]], !PrimeQ[4#+1]&&!PrimeQ[2#+1]||(#==2)&] (* Enrique Pérez Herrero, Aug 16 2011 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Mar 24 2002
STATUS
approved