login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122779
Expansion of F(q)*F(q^5) where F(q) = eta(q^2)*eta(q^3)^3 / (eta(q)*eta(q^6)).
2
1, 1, 1, -1, -1, 1, 0, 1, -3, -1, 0, -1, 2, -4, -1, -1, -2, 1, -4, 1, 0, 0, 4, 1, 1, 2, 5, 4, 2, -1, 0, 1, 0, 6, 0, -1, 2, -4, 2, -1, 2, -4, -8, 0, 3, 0, -4, -1, 1, 1, -2, -2, -6, 1, 0, -4, -4, -6, 8, 1, -2, 8, -8, -1, -2, 0, 0, -6, 4, 4, -8, 1, 2, 2, 1, 4, 0, 2, 8, 1, 1, -6, 8, 4, 2, -4, 2, 0, 2, -1, 0, 0, 0, 0, 4, 1, 2, 9, 0, -1, 10, 6, 8, 2, 0
OFFSET
1,9
LINKS
FORMULA
Euler transform of period 30 sequence [ 1, 0, -2, 0, 2, -2, 1, 0, -2, 0, 1, -2, 1, 0, -4, 0, 1, -2, 1, 0, -2, 0, 1, -2, 2, 0, -2, 0, 1, -4, ...].
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; F[q_]:= eta[q^2]*eta[q^3]^3/(eta[q]*eta[q^6]); a:= CoefficientList[Series[F[q]*F[q^5], {q, 0, 100}], q]; Table[a[[n]], {n, 2, 50}] (* G. C. Greubel, Jul 18 2018 *)
PROG
(PARI) {a(n)=local(A); if(n<1, 0, n--; A=x*O(x^n); A=eta(x^2+A)*eta(x^3+A)^3/eta(x+A)/eta(x^6+A); A=A*subst(A+x*O(x^(n\5)), x, x^5); polcoeff(A, n))}
CROSSREFS
A122777(n)=a(2n).
Sequence in context: A291635 A308243 A268386 * A120323 A320476 A304326
KEYWORD
sign
AUTHOR
Michael Somos, Sep 10 2006
STATUS
approved