login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of F(q)*F(q^5) where F(q) = eta(q^2)*eta(q^3)^3 / (eta(q)*eta(q^6)).
2

%I #7 Jul 18 2018 02:40:44

%S 1,1,1,-1,-1,1,0,1,-3,-1,0,-1,2,-4,-1,-1,-2,1,-4,1,0,0,4,1,1,2,5,4,2,

%T -1,0,1,0,6,0,-1,2,-4,2,-1,2,-4,-8,0,3,0,-4,-1,1,1,-2,-2,-6,1,0,-4,-4,

%U -6,8,1,-2,8,-8,-1,-2,0,0,-6,4,4,-8,1,2,2,1,4,0,2,8,1,1,-6,8,4,2,-4,2,0,2,-1,0,0,0,0,4,1,2,9,0,-1,10,6,8,2,0

%N Expansion of F(q)*F(q^5) where F(q) = eta(q^2)*eta(q^3)^3 / (eta(q)*eta(q^6)).

%H G. C. Greubel, <a href="/A122779/b122779.txt">Table of n, a(n) for n = 1..1500</a>

%F Euler transform of period 30 sequence [ 1, 0, -2, 0, 2, -2, 1, 0, -2, 0, 1, -2, 1, 0, -4, 0, 1, -2, 1, 0, -2, 0, 1, -2, 2, 0, -2, 0, 1, -4, ...].

%t eta[q_] := q^(1/24)*QPochhammer[q]; F[q_]:= eta[q^2]*eta[q^3]^3/(eta[q]*eta[q^6]); a:= CoefficientList[Series[F[q]*F[q^5], {q, 0, 100}], q]; Table[a[[n]], {n, 2, 50}] (* _G. C. Greubel_, Jul 18 2018 *)

%o (PARI) {a(n)=local(A); if(n<1, 0, n--; A=x*O(x^n); A=eta(x^2+A)*eta(x^3+A)^3/eta(x+A)/eta(x^6+A); A=A*subst(A+x*O(x^(n\5)),x,x^5); polcoeff(A,n))}

%Y A122777(n)=a(2n).

%K sign

%O 1,9

%A _Michael Somos_, Sep 10 2006