login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301375
Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x,y,z nonnegative integers and w a positive integer such that x*(y+3*z) is a cube or half a cube and y <= z <= w if x = 0.
1
1, 2, 2, 2, 3, 2, 2, 2, 3, 5, 2, 3, 4, 1, 1, 1, 5, 7, 3, 3, 5, 3, 1, 4, 6, 7, 4, 3, 6, 1, 4, 2, 6, 7, 1, 5, 4, 4, 2, 5, 5, 4, 5, 2, 8, 4, 2, 1, 4, 7, 5, 7, 6, 4, 3, 3, 4, 7, 2, 1, 5, 3, 2, 2, 7, 10, 6, 4, 6, 3, 4, 5, 9, 8, 5, 4, 2, 6, 2, 3
OFFSET
1,2
COMMENTS
Conjecture: a(n) > 0 for all n > 0.
We have verified this for all n = 1..3*10^6.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
EXAMPLE
a(14) = 1 since 14 = 0^2 + 1^2 + 2^2 + 3^2 with 0*(1+3*2) = 0^3.
a(15) = 1 since 15 = 2^2 + 1^2 + 1^2 + 3^2 with 2*(1+3*1) = 2^3.
a(16) = 1 since 16 = 0^2 + 0^2 + 0^2 + 4^2 with 0*(0+3*0) = 0^3.
a(60) = 1 since 60 = 4^2 + 2^2 + 2^2 + 6^2 with 4*(2+3*2) = 4^3/2.
a(92) = 1 since 92 = 6^2 + 6^2 + 4^2 + 2^2 with 6*(6+3*4) = 6^3/2.
a(240) = 1 since 240 = 2^2 + 14^2 + 6^2 + 2^2 with 2*(14+3*6) = 4^3.
a(807) = 1 since 807 = 1^2 + 21^2 + 2^2 + 19^2 with 1*(21+3*2) = 3^3.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)];
QQ[n_]:=QQ[n]=CQ[n]||CQ[2n];
tab={}; Do[r=0; Do[If[QQ[x(y+3z)]&&SQ[n-x^2-y^2-z^2], r=r+1], {x, 0, Sqrt[n-1]}, {y, 0, Sqrt[If[x==0, n/3, n-1-x^2]]}, {z, If[x==0, y, 0], Sqrt[If[x==0, (n-x^2-y^2)/2, n-1-x^2-y^2]]}]; tab=Append[tab, r], {n, 1, 80}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 19 2018
STATUS
approved