

A301314


Number of ways to write n as x^2 + y^2 + z^2 + w^2, where w is a positive integer and x,y,z are nonnegative integers such that x + 3*y + 9*z = 2^k*m^3 for some k,m = 0,1,2,....


4



1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 2, 1, 4, 4, 1, 2, 1, 3, 1, 1, 4, 2, 4, 1, 2, 3, 1, 1, 4, 2, 4, 3, 2, 5, 4, 3, 3, 7, 3, 2, 3, 1, 3, 1, 3, 6, 7, 2, 4, 7, 3, 1, 5, 2, 6, 3, 2, 7, 7, 1, 4, 9, 3, 4, 2, 5, 5, 4, 5, 4, 6, 1, 5, 5, 1, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


COMMENTS

Conjecture 1: a(n) > 0 for all n > 0.
Conjecture 2: Any positive integer can be written as x^2 + y^2 + z^2 + w^2, where x is a positive integer and y,z,w are nonnegative integers such that 2*x + 7*y = 2^k*m^3 for some k = 0,1,2 and m = 1,2,3,....
We have verified a(n) > 0 for all n = 1..10^7.
See also A301303 and A301304 for similar conjectures.


LINKS

ZhiWei Sun, Table of n, a(n) for n = 1..10000
ZhiWei Sun, Refining Lagrange's foursquare theorem, J. Number Theory 175(2017), 167190.
ZhiWei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 20172018.


EXAMPLE

a(7) = 1 since 7 = 1^2 + 2^2 + 1^2 + 1^2 with 1 + 3*2 + 9*1 = 2*2^3.
a(19) = 1 since 19 = 4^2 + 1^2 + 1^2 + 1^2 with 4 + 3*1 + 9*1 = 2*2^3.
a(46) = 1 since 46 = 0^2 + 6^2 + 1^2 + 3^2 with 0 + 3*6 + 9*1 = 3^3.
a(79) = 1 since 79 = 2^2 + 7^2 + 1^2 + 5^2 with 2 + 3*7 + 9*1 = 2^2*2^3.
a(125) = 1 since 125 = 2^2 + 0^2 + 0^2 + 11^2 with 2 + 3*0 + 9*0 = 2*1^3.
a(736) = 1 since 736 = 0^2 + 24^2 + 4^2 + 12^2 with 0 + 3*24 + 9*4 = 2^2*3^3.


MATHEMATICA

SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)];
QQ[n_]:=CQ[n]CQ[n/2]CQ[n/4];
tab={}; Do[r=0; Do[If[QQ[x+3y+9z]&&SQ[nx^2y^2z^2], r=r+1], {x, 0, Sqrt[n1]}, {y, 0, Sqrt[n1x^2]}, {z, 0, Sqrt[n1x^2y^2]}]; tab=Append[tab, r], {n, 1, 80}]; Print[tab]


CROSSREFS

Cf. A000118, A000290, A271510, A271513, A271518, A281976, A300666, A300667, A300708, A300712, A300751, A300752, A300791, A300792, A300844, A300908, A301303, A301304.
Sequence in context: A000188 A162401 A324924 * A241898 A191090 A331958
Adjacent sequences: A301311 A301312 A301313 * A301315 A301316 A301317


KEYWORD

nonn


AUTHOR

ZhiWei Sun, Mar 18 2018


STATUS

approved



