The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A301313 a(n) = Sum_{p in P} binomial(H(2,p),2), where P is the set of partitions of n, and H(2,p) = number of hooks of size 2 in p. 2
 0, 0, 0, 0, 1, 1, 6, 7, 18, 24, 49, 66, 116, 158, 255, 346, 525, 707, 1030, 1374, 1936, 2560, 3519, 4608, 6207, 8056, 10673, 13735, 17942, 22906, 29569, 37469, 47864, 60235, 76249, 95335, 119705, 148770, 185447, 229182, 283810, 348903, 429498, 525411, 643244 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS This sequence is part of the contribution to the quadratic b^2 term of a 2-truncation of the Han/Nekrasov-Okounkov hooklength formula (2-truncation here being the limiting of hook sizes counted by the formula to only those of size 1 or 2). Exploring this sequence may lead to more general formulas regarding the hooklength formula for larger hooks, or the entire contribution to the quadratic term of the formula. LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1900 from Alois P. Heinz) Guo-Niu Han, The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications, arXiv:0805.1398 [math.CO], 2008. Guo-Niu Han, The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications, Annales de l'institut Fourier, Tome 60 (2010) no. 1, pp. 1-29. FORMULA G.f.: (q^4+3*q^6)/((1-q^2)*(1-q^4))*Product_{j>=1} 1/(1-q^j). - Emily Anible, May 18 2018 a(n) ~ sqrt(3) * exp(Pi*sqrt((2*n)/3)) / (4*Pi^2). - Vaclav Kotesovec, Oct 06 2018 EXAMPLE For n=6, we sum over the partitions of 6. For each partition, we calculate binomial(number of hooks of size 2 in partition, 2): 6............binomial(1,2) = 0 5,1..........binomial(1,2) = 0 4,2..........binomial(2,2) = 1 4,1,1........binomial(2,2) = 1 3,3..........binomial(2,2) = 1 3,2,1........binomial(0,2) = 0 3,1,1,1......binomial(2,2) = 1 2,2,2........binomial(2,2) = 1 2,2,1,1......binomial(2,2) = 1 2,1,1,1,1....binomial(1,2) = 0 1,1,1,1,1,1..binomial(1,2) = 0 ------------------------------ Total........................6 MAPLE b:= proc(n, i, p, l) option remember; `if`(n=0, p*(p-1)/2,       `if`(i>n, 0, b(n, i+1, p, 1)+add(b(n-i*j, i+1, p+       `if`(j>1, 1, 0)+l, 0), j=1..n/i)))     end: a:= n-> b(n, 1, 0\$2): seq(a(n), n=0..50);  # Alois P. Heinz, Apr 05 2018 MATHEMATICA b[n_, i_, p_, l_] := b[n, i, p, l] = If[n == 0, p*(p-1)/2, If[i > n, 0, b[n, i+1, p, 1] + Sum[b[n-i*j, i+1, p+If[j>1, 1, 0]+l, 0], {j, 1, n/i}]] ]; a[n_] := b[n, 1, 0, 0]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 28 2018, after Alois P. Heinz *) Table[Sum[(2*k - 5 - (-1)^(k/2))*(1 + (-1)^k)/4 * PartitionsP[n-k], {k, 1, n}], {n, 0, 60}] (* Vaclav Kotesovec, Oct 06 2018 *) CROSSREFS Cf. A024786, A138785. Sequence in context: A030746 A315848 A321450 * A005302 A028324 A074342 Adjacent sequences:  A301310 A301311 A301312 * A301314 A301315 A301316 KEYWORD nonn AUTHOR Emily Anible, Apr 03 2018 EXTENSIONS a(10)-a(44) from Alois P. Heinz, Apr 03 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 05:56 EDT 2022. Contains 353693 sequences. (Running on oeis4.)