The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A300844 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x or 2*y or z is a square and (12*x)^2 + (21*y)^2 + (28*z)^2 is also a square. 6
 1, 4, 4, 2, 5, 6, 2, 2, 4, 5, 7, 1, 3, 7, 2, 3, 5, 7, 7, 2, 6, 1, 2, 2, 2, 11, 7, 3, 3, 8, 5, 1, 4, 5, 9, 4, 6, 8, 6, 4, 7, 9, 3, 3, 2, 9, 2, 1, 3, 6, 16, 5, 9, 7, 6, 5, 1, 5, 9, 4, 4, 7, 5, 5, 5, 17, 6, 4, 7, 3, 6, 3, 6, 11, 11, 4, 3, 1, 8, 2, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Conjecture 1: a(n) > 0 for all n = 0,1,2,.... Conjecture 2: Any positive integer can be written as x^2 + y^2 + z^2 + w^2 with w a positive integer and x,y,z nonnegative integers such that x or y or z is a square and 144*x^2 + 505*y^2 + 720*z^2 is also a square. By the author's 2017 JNT paper, each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w integers such that x (or 2*x) is a square. In 2016, the author conjectured in A271510 that each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and y >= z such that (3*x)^2 + (4*y)^2 + (12*z)^2 is a square. See also A300791 and A300792 for similar conjectures. LINKS Zhi-Wei Sun, Table of n, a(n) for n = 0..10000 Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190. Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018. EXAMPLE a(11) = 1 since 11 = 0^2 + 1^2 + 1^2 + 3^2 with 0 = 0^2 and (12*0)^2 + (21*1)^2 + (28*1)^2 = 35^2. a(56) = 1 since 56 = 4^2 + 6^2 + 2^2 + 0^2 with 4 = 2^2 and (12*4)^2 + (21*6)^2 + (28*2)^2 = 146^2. a(77) = 1 since 77 = 4^2 + 0^2 + 5^2 + 6^2 with 4 = 2^2 and (12*4)^2 + (21*0)^2 + (28*5)^2 = 148^2. a(184) = 1 since 184 = 12^2 + 2^2 + 0^2 + 6^2 with 0 = 0^2 and (12*12)^2 + (21*2)^2 + (28*0)^2 = 150^2. a(599) = 1 since 599 = 21^2 + 11^2 + 1^2 + 6^2 with 1 = 1^2 and (12*21)^2 + (21*11)^2 + (28*1)^2 = 343^2. a(7836) = 1 since 7836 = 38^2 + 18^2 + 68^2 + 38^2 with 2*18 = 6^2 and (12*38)^2 + (21*18)^2 + (28*68)^2 = 1994^2. a(15096) = 1 since 15096 = 16^2 + 6^2 + 52^2 + 110^2 with 16 = 4^2 and (12*16)^2 + (21*6)^2 + (28*52)^2 = 1474^2. MATHEMATICA SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; tab={}; Do[r=0; Do[If[(SQ[x]||SQ[2y]||SQ[z])&&SQ[(12x)^2+(21y)^2+(28z)^2]&&SQ[n-x^2-y^2-z^2], r=r+1], {x, 0, Sqrt[n]}, {y, 0, Sqrt[n-x^2]}, {z, 0, Sqrt[n-x^2-y^2]}]; tab=Append[tab, r], {n, 0, 80}] CROSSREFS Cf. A000118, A000290, A271510, A271513, A271518, A281976, A300666, A300667, A300708, A300712, A300751, A300752, A300791, A300792. Sequence in context: A213089 A246644 A339703 * A011321 A245296 A273616 Adjacent sequences:  A300841 A300842 A300843 * A300845 A300846 A300847 KEYWORD nonn AUTHOR Zhi-Wei Sun, Mar 13 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 04:10 EDT 2021. Contains 347673 sequences. (Running on oeis4.)