login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300752
Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x + 3*y + 5*z a positive square, where x,y,z,w are nonnegative integers such that 3*x or y or z is a square.
11
1, 2, 2, 1, 1, 1, 1, 1, 2, 3, 2, 2, 2, 4, 2, 1, 5, 5, 2, 1, 2, 2, 2, 1, 4, 5, 2, 1, 4, 7, 1, 2, 5, 3, 2, 1, 3, 5, 4, 2, 8, 5, 1, 3, 5, 6, 1, 2, 4, 8, 5, 4, 2, 4, 4, 2, 6, 5, 5, 2, 1, 6, 4, 1, 8, 9, 6, 2, 3, 4, 1, 2, 6, 8, 5, 4, 5, 8, 2, 1
OFFSET
1,2
COMMENTS
Conjecture: a(n) > 0 for all n = 1,2,3,....
This is stronger than the author's 1-3-5 conjecture in A271518. See also A300751 for a similar conjecture stronger than the 1-3-5 conjecture.
In 2020, A. Machiavelo, R. Reis and N. Tsopanidis verified a(n) > 0 for n up to 1.05*10^11. - Zhi-Wei Sun, Oct 06 2020
LINKS
António Machiavelo, Rogério Reis, and Nikolaos Tsopanidis, Report on Zhi-Wei Sun's "1-3-5 conjecture" and some of its refinements, arXiv:2005.13526 [math.NT], 2020.
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
EXAMPLE
a(71) = 1 since 71 = 3^2 + 1^2 + 6^2 + 5^2 with 1 = 1^2 and 3 + 3*1 + 5*6 = 6^2.
a(248) = 1 since 248 = 10^2 + 2^2 + 0^2 + 12^2 with 0 = 0^2 and 10 + 3*2 + 5*0 = 4^2.
a(263) = 1 since 263 = 13^2 + 2^2 + 9^2 + 3^2 with 9 = 3^2 and 13 + 3*2 + 5*9 = 8^2.
a(808) = 1 since 808 = 12^2 + 14^2 + 18^2 + 12^2 with 3*12 = 6^2 and 12 + 3*14 + 5*18 = 12^2.
a(1288) = 1 since 1288 = 12^2 + 18^2 + 26^2 + 12^2 with 3*12 = 6^2 and 12 + 3*18 + 5*26 = 14^2.
a(3544) = 1 since 3544 = 14^2 + 34^2 + 16^2 + 44^2 with 16 = 4^2 and 14 + 3*34 + 5*16 = 14^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
tab={}; Do[r=0; Do[If[(SQ[3(m^2-3y-5z)]||SQ[y]||SQ[z])&&SQ[n-(m^2-3y-5z)^2-y^2-z^2], r=r+1], {m, 1, (35n)^(1/4)}, {y, 0, Min[m^2/3, Sqrt[n]]}, {z, 0, Min[(m^2-3y)/5, Sqrt[n-y^2]]}]; tab=Append[tab, r], {n, 1, 80}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 11 2018
STATUS
approved