The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A333851 Irregular triangle read by rows: T(n, k) = gcd(A333850(n, k), 2*A333855(n)), for n >= 1, and k = 1,2, ..., A135303(A333855(n)). 2
 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 3, 3, 2, 2, 2, 2, 2, 10, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 6, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 14, 38, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The length of row n is A135303(A333855(n)) (the B numbers for A333855(n)). LINKS Wolfdieter Lang, On the Equivalence of Three Complete Cyclic Systems of Integers, arXiv:2008.04300 [math.NT], 2020. FORMULA T(n, k) = gcd((A333850(n, k), 2*A333855(n)), for n >= 1, and k = 1, 2, ..., A135303(A333855(n)) (B numbers >= 2 for A333855(n)). EXAMPLE The irregular triangle T(n, k) begins (here A(n) = A333855(n)): n,  A(n) \ k   1     2    3    4   5  6  7  8  9 ... ---------------------------------------------------------------- 1,   17:       2     2 2,   31:       1     1    1 3,   33:       1     1 4,   41:       2     2 5,   43:       1     1    1 6,   51:       2     2 7,   57:       3     3 8,   63:       2     2    2 9,   65:       2     2   10    2 10,  73:       1     1    1    1 11,  85:       2     2    2    2 12,  89:       1     1    1    1 13,  91:       2     2    2 14,  93:       2     2    2 15,  97:       2     2 16,  99:       1     1 17, 105:       6     6 18, 109:       2     2    2 19, 113:       2     2    2    2 20, 117:       2     2    2 21, 119:       2     2 22, 123:       2     2 23, 127:       1     1    1    1   1  1  1  1  1 24, 129:       1     1    1    1   1  1 25, 133:       2    14   38 26, 137:       2     2 ... PROG (PARI) RRS(n) = select(x->(((x%2)==1) && (gcd(n, x)==1)), [1..n]); isok8(m, n) = my(md = Mod(2, 2*n+1)^m); (md==1) || (md==-1); A003558(n) = my(m=1); while(!isok8(m, n) , m++); m; B(n) = eulerphi(n)/(2*A003558((n-1)/2)); fmiss(rrs, qs) = {for (i=1, #rrs, if (! setsearch(qs, rrs[i]), return (rrs[i])); ); } listb(nn) = {my(v=List()); forstep (n=3, nn, 2, my(bn = B(n)); if (bn >= 2, listput(v, n); ); ); Vec(v); } pergcd(n) = {my(bn = B(n)); if (bn >= 2, my(vn = vector(bn)); my(q=1, qt = List()); my(p = A003558((n-1)/2)); my(rrs = RRS(n)); for (k=1, bn, my(qp = List()); q = fmiss(rrs, Set(qt)); listput(qp, q); listput(qt, q); for (i=1, p-1, q = abs(n-2*q); listput(qp, q); listput(qt, q); ); vn[k] = gcd(vecsum(Vec(qp)), 2*n); ); return (vn); ); } listag(nn) = {my(v = listb(nn)); vector(#v, k, pergcd(v[k])); } \\ Michel Marcus, Jun 14 2020 CROSSREFS Cf. A333848, A333850, A333854, A333855. Sequence in context: A073772 A164562 A058188 * A335230 A300752 A300751 Adjacent sequences:  A333848 A333849 A333850 * A333852 A333853 A333854 KEYWORD nonn,tabf AUTHOR Wolfdieter Lang, Jun 08 2020 EXTENSIONS Some incorrect terms were found by Michel Marcus, Jun 11 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 27 01:40 EDT 2021. Contains 346302 sequences. (Running on oeis4.)