login
A058188
Number of primes between prime(n) and prime(n) + sqrt(prime(n)), where prime(n) is the n-th prime.
3
1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 3, 3, 2, 1, 0, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 1, 1, 3, 4, 3, 2, 2, 1, 2, 3, 3, 4, 3, 3, 2, 1, 1, 3, 2, 1, 1, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 2, 3, 2, 4, 3, 4, 3, 3, 4, 4, 3, 3, 2, 2, 3, 4, 3, 3, 3, 2, 2, 1, 3
OFFSET
1,12
COMMENTS
Conjecture: if prime(n)>=127, there is always at least one prime between prime(n) and prime(n) + sqrt(prime(n)). Easily checked for prime(n)<1.1e15 in existing maximal gap tables
REFERENCES
R. K. Guy: Unsolved problems in number theory, 2nd ed., Springer-Verlag,1994; Sections A8, A 9.
Paulo Ribenboim: The little book of big primes, Springer-Verlag,1991; 142ff
EXAMPLE
a(12) = 2 because between p(12)= 37 and 37+sqrt(37) = 43.08 there are two primes: 41 and 43
MATHEMATICA
Table[PrimePi[p+Sqrt[p]]-PrimePi[p], {p, Prime[Range[100]]}] (* Harvey P. Dale, Mar 13 2023 *)
PROG
(PARI) a(n) = my(p=prime(n)); primepi(p+sqrtint(p)) - n; \\ Michel Marcus, Jun 21 2017
CROSSREFS
Cf. A030296.
Sequence in context: A305195 A073772 A164562 * A333851 A335230 A300752
KEYWORD
nonn
AUTHOR
Adam Kertesz, Dec 04 2000
STATUS
approved