OFFSET
0,4
COMMENTS
We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).
The prime omicron of n (A304465) is 0 if n is 1, 1 if n is prime, and otherwise the second-to-last part of the omega-sequence of n. For example, the prime omicron of 180 is 2.
Conjecture: all terms after a(10) = 4 are less than 4.
From James Rayman, Apr 17 2021: (Start)
The conjecture is false. a(3804) = 4. In fact, there are 91 values of n < 10000 such that a(n) = 4.
The first value of n such that a(n) = 5 is 37934. For any other n < 5*10^5, a(n) < 5. (End)
LINKS
James Rayman, Table of n, a(n) for n = 0..10000
MATHEMATICA
omseq[n_Integer]:=If[n<=1, {}, Total/@NestWhileList[Sort[Length/@Split[#]]&, Sort[Last/@FactorInteger[n]], Total[#]>1&]];
omicron[n_]:=Switch[n, 1, 0, _?PrimeQ, 1, _, omseq[n][[-2]]];
Table[omicron[n!], {n, 0, 100}]
PROG
(Python)
from sympy.ntheory import *
def red(v):
r = {}
for i in v: r[i] = r.get(i, 0) + 1
return r
def omicron(v):
if len(v) == 0: return 0
if len(v) == 1: return v[0]
else: return omicron(list(red(v).values()))
f, a_list = {}, []
for i in range(101):
a_list.append(omicron(list(f.values())))
g = factorint(i+1)
for k in g: f[k] = f.get(k, 0) + g[k]
print(a_list) # James Rayman, Apr 17 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 18 2019
EXTENSIONS
More terms from James Rayman, Apr 17 2021
STATUS
approved