The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A301378 a(n) = 10*A007605(n) - 9*A007652(n). 1
 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 11, 13, 17, 19, 23, 37, 41, 47, 49, 59, 61, 67, 73, 77, 83, 89, 91, 101, 103, 107, 109, 31, 43, 47, 49, 53, 59, 61, 71, 77, 83, 89, 91, 97, 101, 103, 113, 37, 41, 43, 47, 61 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Equivalently, a(n) is the sum of all but the last digit of the n-th prime, concatenated with that last digit. It appears that as the prime number xyzd transformed by (x+y+z)*10 +d; the larger the prime the less frequent the result is prime.... LINKS Shawn A. Broyles, Table of n, a(n) for n = 1..10000 FORMULA Let ...xyzd represent the decimal expansion of prime(n); then a(n) = (... + x + y + z)*10 + d. a(n) = 10*A007605(n) - 9*A007652(n). - Robert Israel, Mar 25 2018 EXAMPLE For p=1571 (prime), 1+5+7 = 13; 13*10 = 130; 130+1 = 131 (prime). MAPLE map(t -> 10*convert(convert(t, base, 10), `+`)-9*(t mod 10), [seq(ithprime(i), i=1..100)]); # Robert Israel, Mar 25 2018 MATHEMATICA Array[10 Total@ # - 9 Last@ # &@ IntegerDigits[Prime@ #] &, 67] (* Michael De Vlieger, Apr 27 2018 *) PROG (PARI) a(n) = my(p=prime(n); d=p % 10); sumdigits(p-d)*10+d; \\ Michel Marcus, Mar 23 2018 CROSSREFS Cf. A007605, A007652, A176044. Sequence in context: A094742 A110923 A137589 * A052424 A055398 A070159 Adjacent sequences:  A301375 A301376 A301377 * A301379 A301380 A301381 KEYWORD nonn,easy,base,less AUTHOR Edmund Algeo, Mar 19 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 18:06 EDT 2020. Contains 334728 sequences. (Running on oeis4.)