

A301376


Number of ways to write n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and z <= w such that x^2(3*y)^2 = 4^k for some k = 0,1,2,....


25



1, 1, 2, 1, 1, 3, 1, 1, 4, 2, 2, 3, 3, 3, 3, 1, 5, 6, 2, 2, 10, 5, 4, 3, 2, 7, 7, 3, 5, 4, 3, 1, 12, 8, 2, 6, 4, 5, 10, 2, 7, 13, 8, 5, 10, 6, 6, 3, 8, 4, 7, 7, 8, 11, 4, 3, 17, 9, 5, 4, 8, 5, 9, 1, 8, 14, 8, 8, 13, 5, 8, 6, 11, 10, 7, 5, 13, 15, 7, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Conjecture: a(n) > 0 for all n > 0. Moreover, any positive square n^2 can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w integers and y even such that x^2  (3*y)^2 = 4^k for some k = 0,1,2,....
We have verifed this for all n = 1..10^7.
Compare this conjecture with the conjectures in A299537.
As 3*A001353(n)^2 + 1 = A001075(n)^2, the conjecture in A300441 implies that any positive square can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w integers such that x^2  3*y^2 = 4^k for some k = 0,1,2,....
See also A301391 for a similar conjecture.


LINKS

ZhiWei Sun, Table of n, a(n) for n = 1..10000
ZhiWei Sun, Refining Lagrange's foursquare theorem, J. Number Theory 175(2017), 167190.
ZhiWei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 20172018.


EXAMPLE

a(1) = 1 since 1^2 = 1^2 + 0^2 + 0^2 + 0^2 with 1^2  (3*0)^2 = 4^0.
a(5) = 1 since 5^2 = 4^2 + 0^2 + 0^2 + 3^2 with 4^2  (3*0)^2 = 4^2.
a(7) = 1 since 7^2 = 2^2 + 0^2 + 3^2 + 6^2 with 2^2  (3*0)^2 = 4^1.
a(31) = 3 since 31^2 = 10^2 + 2^2 + 4^2 + 29^2 with 10^2  (3*2)^2 = 4^3, and 31^2 = 20^2 + 4^2 + 4^2 + 23^2 = 20^2 + 4^2 + 16^2 + 17^2 with 20^2  (3*4)^2 = 4^4.


MATHEMATICA

f[n_]:=f[n]=FactorInteger[n];
g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n], i], 1]3, 4]==0&&Mod[Part[Part[f[n], i], 2], 2]==1], {i, 1, Length[f[n]]}]==0;
QQ[n_]:=QQ[n]=n==0(n>0&&g[n]);
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
tab={}; Do[r=0; Do[If[SQ[4^k+9y^2]&&QQ[n^24^k10y^2], Do[If[SQ[n^2(4^k+10y^2)z^2], r=r+1], {z, 0, Sqrt[(n^24^k10y^2)/2]}]], {k, 0, Log[2, n]}, {y, 0, Sqrt[(n^24^k)/10]}]; tab=Append[tab, r], {n, 1, 80}]; Print[tab]


CROSSREFS

Cf. A000118, A000290, A000302, A299537, A299794, A299924, A300219, A300396, A300441, A300510, A301391.
Sequence in context: A224838 A030272 A157128 * A307828 A280698 A217667
Adjacent sequences: A301373 A301374 A301375 * A301377 A301378 A301379


KEYWORD

nonn


AUTHOR

ZhiWei Sun, Mar 19 2018


STATUS

approved



