login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295896
a(n) = 1 if there are no odd runs of 1's in the binary expansion of n followed by a 0 to their right, 0 otherwise.
6
1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
0
FORMULA
a(0) = 1; and then after, for odd n, a(n) = a((n-1)/2), for even n, a(n) = 0 if A007814(1+(n/2)) is odd, otherwise a(n/2).
a(n) = A053866(A005940(1+n)) = A000035(A000203(A005940(1+n))).
a(n) = A295875(n) + A295895(n) mod 2.
EXAMPLE
Drawing the terms as a binary tree (the first six levels shown) helps in seeing where terms of A028982 (squares and twice squares) are located in Doudna-tree (A005940, at the positions where 1's occur here):
1
|
1
............../ \..............
0 1
....../ \...... ....../ \......
0 0 1 1
/ \ / \ / \ / \
/ \ / \ / \ / \
0 0 0 0 1 1 0 1
/ \ / \ / \ / \ / \ / \ / \ / \
0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1
MATHEMATICA
Array[Boole@ NoneTrue[Partition[PadRight[#, # + Boole[OddQ@ #] &@ Length@ #, ""] /. _?StringQ -> {0, 0}, 2, 2][[All, All, -1]] &@ Map[{First@ #, Length@ #} &, Split@ IntegerDigits[#, 2]], And[OddQ@ #1, #2 > 0] & @@ # &] &, 120, 0] (* Michael De Vlieger, Dec 02 2017 *)
PROG
(Scheme, with memoization-macro definec)
(definec (A295896 n) (cond ((zero? n) 1) ((odd? n) (A295896 (/ (- n 1) 2))) ((odd? (A007814 (+ 1 (/ n 2)))) 0) (else (A295896 (/ n 2)))))
CROSSREFS
Characteristic function of A295897.
Sequence in context: A189920 A318963 A350600 * A176918 A176890 A164057
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Dec 01 2017
STATUS
approved