login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A037011 Baum-Sweet cubic sequence. 12
1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Memo: more sequences like this should be added to the database.

LINKS

Table of n, a(n) for n=1..92.

J.-P. Allouche, Finite automata and arithmetic Seminaire Lotharingien de Combinatoire, B30c (1993), 23 pp. [Formerly: Publ. I.R.M.A. Strasbourg, 1993, 1993/034, p. 1-18.]

Michael Gilleland, Some Self-Similar Integer Sequences

H. Niederreiter and M. Vielhaber, Tree complexity and a doubly exponential gap between structured and random sequences, J. Complexity, 12 (1996), 187-198.

D. P. Robbins, Cubic Laurent series in characteristic 2 with bounded partial quotients, arXiv:math/9903092 [math.NT], 1999.

Index entries for characteristic functions

FORMULA

G.f. satisfies A^3+x^(-1)*A+1 = 0 (mod 2).

It appears that a(n)=sum(k=0, n-1, C(n-1+k, n-1-k)*C(n-1, k)) modulo 2 = A082759(n-1) (mod 2). It appears also that a(k)=1 iff k/3 is in A003714. - Benoit Cloitre, Jun 20 2003

From Antti Karttunen, Nov 03 2017: (Start)

If Cloitre's above observation holds, then we also have (assuming starting offset 0, with a(0) = 1):

a(n) = A000035(A106737(n))

a(n) = A010052(A005940(1+n)).

(End)

MAPLE

A := x; for n from 1 to 100 do series(x+x*A^3+O(x^(n+2)), x, n+2); A := series(% mod 2, x, n+2); od: A;

CROSSREFS

Cf. A086747, A106737, A277335.

Sequence in context: A014135 A014054 A014099 * A070563 A024692 A079978

Adjacent sequences:  A037008 A037009 A037010 * A037012 A037013 A037014

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 01:01 EDT 2018. Contains 316297 sequences. (Running on oeis4.)