login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A176890
Triangle T(n,k) read by rows. Signed subsequence of A051731.
4
-1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,1
COMMENTS
Let A=A176890*A176890, B=A*A, C=B*B, D=C*C and so on, then the leftmost column in the last matrix converges to the Moebius function A008683.
FORMULA
T(n,k) = if n=1 and k=1 then -1 elseif n=k then 0 elseif k divides n then 1 else 0.
EXAMPLE
Table begins:
-1,
1,0,
1,0,0,
1,1,0,0,
1,0,0,0,0,
1,1,1,0,0,0,
1,0,0,0,0,0,0,
1,1,0,1,0,0,0,0,
1,0,1,0,0,0,0,0,0,
1,1,0,0,1,0,0,0,0,0,
PROG
(Excel) =if(and(row()=1; column()=1); -1; if(mod(row(); column())=0; 1; 0)-if(and(column()>1; row()=column()); 1; 0))
CROSSREFS
This is A176918 * the diagonalized mu(n).
Sequence in context: A350600 A295896 A176918 * A164057 A140820 A275661
KEYWORD
sign,tabl
AUTHOR
Mats Granvik and Gary W. Adamson, Apr 28 2010
STATUS
approved