The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176893 a(n) = 2^(number of zeros in binary expansion of n) * 3^(numbers of ones in binary expansion of n). 1
 2, 3, 6, 9, 12, 18, 18, 27, 24, 36, 36, 54, 36, 54, 54, 81, 48, 72, 72, 108, 72, 108, 108, 162, 72, 108, 108, 162, 108, 162, 162, 243, 96, 144, 144, 216, 144, 216, 216, 324, 144, 216, 216, 324, 216, 324, 324, 486, 144, 216, 216 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This method doesn't give a distinct encoding of the nonnegative numbers as 54 appears three times and 144 and 216 many more times. LINKS FORMULA a(n) = 2^A023416(n)*3^A000120(n). [R. J. Mathar, Dec 09 2010] MAPLE A000120 := proc(n) add(d, d=convert(n, base, 2)) ; end proc: A023416 := proc(n) if n= 0 then 1; else add(1-d, d=convert(n, base, 2)) ; end if; end proc: A176893 := proc(n) 2^A023416(n)*3^A000120(n); end proc: # R. J. Mathar, Dec 09 2010 MATHEMATICA Table[2^Count[Table[((IntegerDigits[n, 2]) /. 0 -> 2) /. 1 -> 3, {n, 0, 50}][[n]], 2]*3^Count[Table[(( IntegerDigits[n, 2]) /. 0 -> 2) /. 1 -> 3, {n, 0, 50}][[n]], 3], {n, 1, 51}] Table[2^DigitCount[n, 2, 0] 3^DigitCount[n, 2, 1], {n, 0, 50}] (* Harvey P. Dale, Oct 29 2012 *) CROSSREFS Cf. A000120, A023416. Sequence in context: A008810 A280984 A339485 * A144677 A309677 A058616 Adjacent sequences:  A176890 A176891 A176892 * A176894 A176895 A176896 KEYWORD nonn,easy,base AUTHOR Roger L. Bagula, Apr 28 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 7 20:36 EDT 2021. Contains 343652 sequences. (Running on oeis4.)