login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295875
Let p = A295895(n) = parity of the binary weight of A005940(1+n). If A005940(1+n) is a square or twice a square (in A028982) then a(n) = 1 - p, otherwise a(n) = p.
5
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0
OFFSET
0
FORMULA
a(n) = A295895(n) + A295896(n) (mod 2).
a(n) = A295894(n) + A000203(A005940(1+n)) mod 2.
a(n) = A295297(A005940(1+n)).
a(2n+1) = a(n).
EXAMPLE
The first six levels of the binary tree (compare also to the illustrations given at A005940, A295894 and A295895):
0
|
0
............../ \..............
0 0
....../ \...... ....../ \......
0 0 1 0
/ \ / \ / \ / \
/ \ / \ / \ / \
1 0 0 0 0 1 0 0
/ \ / \ / \ / \ / \ / \ / \ / \
1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0
PROG
(Scheme) (define (A295875 n) (A000035 (+ (A295895 n) (A295896 n))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 01 2017
STATUS
approved