login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295878
Multiplicative with a(p^(2e)) = 1, a(p^(2e-1)) = prime(e).
3
1, 2, 2, 1, 2, 4, 2, 3, 1, 4, 2, 2, 2, 4, 4, 1, 2, 2, 2, 2, 4, 4, 2, 6, 1, 4, 3, 2, 2, 8, 2, 5, 4, 4, 4, 1, 2, 4, 4, 6, 2, 8, 2, 2, 2, 4, 2, 2, 1, 2, 4, 2, 2, 6, 4, 6, 4, 4, 2, 4, 2, 4, 2, 1, 4, 8, 2, 2, 4, 8, 2, 3, 2, 4, 2, 2, 4, 8, 2, 2, 1, 4, 2, 4, 4, 4, 4, 6, 2, 4, 4, 2, 4, 4, 4, 10, 2, 2, 2, 1, 2, 8, 2, 6, 8, 4, 2, 3, 2, 8, 4, 2, 2, 8, 4, 2, 2, 4, 4, 12
OFFSET
1,2
COMMENTS
This sequence can be used as a filter. It matches at least to the following sequence, as for all i, j:
a(i) = a(j) => A162642(i) = A162642(j), as A162642(n) = A001222(a(n)).
a(i) = a(j) => A056169(i) = A056169(j), as A056169(n) = A007814(a(n)).
a(i) = a(j) => A295883(i) = A295883(j), as A295883(n) = A007949(a(n)).
a(i) = a(j) => A295662(i) = A295662(j).
a(i) = a(j) => A295664(i) = A295664(j).
FORMULA
a(1) = 1; for n>1, if n = Product prime(i)^e(i), then a(n) = Product prime((e(i)+1)/2)^A000035(e(i)).
MATHEMATICA
Array[Apply[Times, FactorInteger[#] /. {p_, e_} /; p > 0 :> Which[p == 1, 1, EvenQ@ e, 1, True, Prime[(e + 1)/2]]] &, 120] (* Michael De Vlieger, Nov 29 2017 *)
PROG
(Scheme, with memoization-macro definec)
(definec (A295878 n) (if (= 1 n) 1 (let ((e (A067029 n))) (* (if (even? e) 1 (A000040 (/ (+ 1 e) 2))) (A295878 (A028234 n))))))
CROSSREFS
Sequence in context: A029262 A363825 A368470 * A368977 A294931 A365402
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Nov 29 2017
STATUS
approved