login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282721
Let p = n-th prime == 3 mod 8; a(n) = sum of quadratic residues mod p that are < p/2.
12
1, 13, 32, 137, 306, 314, 555, 876, 1400, 1416, 1742, 2450, 3099, 3788, 4816, 5430, 6351, 7344, 8393, 9546, 12858, 13373, 15265, 17277, 16311, 18403, 19521, 22344, 21805, 23590, 25495, 26805, 30767, 30863, 31570, 35980, 40678, 43946, 45640, 49124, 50055, 52776, 58418, 66210, 71521, 71665, 83666, 81628
OFFSET
1,2
LINKS
Christian Aebi and Grant Cairns, Sums of Quadratic residues and nonresidues, arXiv:1512.00896 [math.NT], 2015.
MAPLE
with(numtheory):
Ql:=[]; Qu:=[]; Q:=[]; Nl:=[]; Nu:=[]; N:=[]; Th:=[];
for i1 from 1 to 300 do
p:=ithprime(i1);
if (p mod 8) = 3 then
ql:=0; qu:=0; q:=0; nl:=0; nu:=0; n:=0;
for j from 1 to p-1 do
if legendre(j, p)=1 then
q:=q+j;
if j<p/2 then ql:=ql+j; else qu:=qu+j; fi;
else
n:=n+j;
if j<p/2 then nl:=nl+j; else nu:=nu+j; fi;
fi;
od;
Ql:=[op(Ql), ql];
Qu:=[op(Qu), qu];
Q:=[op(Q), q];
Nl:=[op(Nl), nl];
Nu:=[op(Nu), nu];
N:=[op(N), n];
Th:=[op(Th), q+ql];
fi;
od:
Ql; Qu; Q; Nl; Nu; N; Th; # A282721 - A282727
# Alternative
f:= proc(p) local q, r, t, j;
r:= (p-1)/2; t:= 0;
for j from 1 to r do
q:= j^2 mod p;
if q <= r then t:= t+q fi;
od:
t
end proc:
map(f, select(isprime, [seq(i, i=3..10000, 8)])); # Robert Israel, Mar 27 2017
MATHEMATICA
s[p_] := Total[Select[Range[Floor[p/2]], JacobiSymbol[#, p] == 1&]];
s /@ Select[Range[3, 2000, 8], PrimeQ] (* Jean-François Alcover, Nov 17 2017 *)
PROG
(Python)
from sympy import isprime
def a(p):
r=(p - 1)//2
t=0
for j in range(1, r + 1):
q=(j**2)%p
if q<=r:t+=q
return t
print([a(p) for p in range(3, 2001, 8) if isprime(p)]) # Indranil Ghosh, Mar 27 2017, translated from Maple code
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 20 2017
STATUS
approved