login
A282043
Let p = n-th prime == 7 mod 8; a(n) = sum of quadratic nonresidues mod p.
12
14, 161, 279, 658, 1491, 1738, 2884, 4318, 6191, 7849, 10314, 10746, 13157, 16013, 18936, 19783, 27057, 35541, 35232, 39832, 50858, 51363, 55097, 63228, 60875, 68408, 97038, 95906, 103484, 111931, 140205, 136676, 145628, 146445, 172830, 189614, 195038, 209332, 221373, 219641, 238849, 254597
OFFSET
1,1
LINKS
Aebi, Christian, and Grant Cairns. Sums of Quadratic residues and nonresidues, arXiv preprint arXiv:1512.00896 (2015).
MAPLE
with(numtheory):
Ql:=[]; Qu:=[]; Q:=[]; Nl:=[]; Nu:=[]; N:=[];
for i1 from 1 to 300 do
p:=ithprime(i1);
if (p mod 8) = 7 then
ql:=0; qu:=0; q:=0; nl:=0; nu:=0; n:=0;
for j from 1 to p-1 do
if legendre(j, p)=1 then
q:=q+j;
if j<p/2 then ql:=ql+j; else qu:=qu+j; fi;
else
n:=n+j;
if j<p/2 then nl:=nl+j; else nu:=nu+j; fi;
fi;
od;
Ql:=[op(Ql), ql];
Qu:=[op(Qu), qu];
Q:=[op(Q), q];
Nl:=[op(Nl), nl];
Nu:=[op(Nu), nu];
N:=[op(N), n];
fi;
od:
Ql; Qu; Q; Nl; Nu; N; # A282039, A282040, A282041, A282039 again, A282042, A282043
MATHEMATICA
sqnr[p_] := Select[Range[p-1], JacobiSymbol[#, p] != 1&] // Total;
sqnr /@ Select[Prime[Range[200]], Mod[#, 8] == 7&] (* Jean-François Alcover, Aug 30 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 20 2017
STATUS
approved