login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282045
Coefficients in solution to a certain functional equation.
1
1, 12, 168, 2496, 38328, 600672, 9539808, 152891520, 2466138552, 39966566304, 650017375488, 10601365433088, 173287953476448, 2837739346914432, 46542227947686912, 764357417859726336, 12567429586754388408, 206842036732301620896, 3407427981753822944448
OFFSET
0,2
LINKS
Shaun Cooper, Jesús Guillera, Armin Straub, Wadim Zudilin, Crouching AGM, Hidden Modularity, arXiv:1604.01106 [math.NT], 5-April-2016. See Section 2.
FORMULA
From Andrey Zabolotskiy, Feb 22 2017: (Start)
G.f. f(z) satisfies f(z/(1+mu*z)^3) / (1+mu*z)^2 = f(z^2/(1+lambda*z)^3) / (1+lambda*z)^2 with mu=2, lambda=-4.
a(n) = Sum_{0<=k<=n} A282046(k)*A282046(n-k), i.e., this is a convolution transform of A282046. Hence f(z)=g(z)^2, where g(z) is the g.f. of A282046.
(End)
MATHEMATICA
terms=19; f[_]=1; Do[f[z_] = f[z]-f[z/(1+2z)^3] / (1+2z)^2+f[z^2/(1-4z)^3]/ (1-4z)^2 + O[z]^terms // Normal, {terms}]; f[z] // CoefficientList[#, z]& (* Jean-François Alcover, Oct 10 2018, after Andrey Zabolotskiy *)
CROSSREFS
Cf. A282046.
Sequence in context: A079679 A216702 A320761 * A304960 A113380 A071103
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 21 2017
EXTENSIONS
More terms from Andrey Zabolotskiy, Feb 22 2017
STATUS
approved