login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216702
a(n) = Product_{k=1..n} (16 - 4/k).
9
1, 12, 168, 2464, 36960, 561792, 8614144, 132903936, 2060011008, 32044615680, 499896004608, 7816555708416, 122459372765184, 1921670157238272, 30197673899458560, 475110069351481344, 7482983592285831168, 117967035454858985472, 1861257670509997326336
OFFSET
0,2
COMMENTS
This sequence is generalizable: Product_{k=1..n} (q^2 - q/k) = (q^n/n!) * Product_{k=0..n-1} (q*k + q-1) = expansion of (1- x*q^2)^((1-q)/q).
LINKS
FORMULA
G.f.: 1/(1-16*x)^(3/4). - Harvey P. Dale, Sep 19 2012
From Peter Bala, Sep 24 2023: (Start)
a(n) = 16^n * binomial(n - 1/4, n).
P-recursive: a(n) = 4*(4*n - 1)/n * a(n-1) with a(0) = 1. (End)
From Peter Bala, Mar 31 2024: (Start)
a(n) = (-16)^n * binomial(-3/4, n).
a(n) ~ 1/Gamma(3/4) * 16^n/n^(1/4).
E.g.f.: hypergeom([3/4], [1], 16*x).
a(n) = (16^n)*Sum_{k = 0..2*n} (-1)^k*binomial(-3/4, k)* binomial(-3/4, 2*n - k).
(16^n)*a(n) = Sum_{k = 0..2*n} (-1)^k*a(k)*a(2*n-k).
Sum_{k = 0..n} a(k)*a(n-k) = (16^n)/(2*n)! * Product_{k = 1..n} (4*k^2 - 1) = (16^n)/(2*n)! * A079484(n). (End)
MAPLE
seq(product(16-4/k, k=1.. n), n=0..20);
seq((4^n/n!)*product(4*k+3, k=0.. n-1), n=0..20);
MATHEMATICA
Table[Product[16-4/k, {k, n}], {n, 0, 20}] (* or *) CoefficientList[ Series[ 1/(1-16*x)^(3/4), {x, 0, 20}], x] (* Harvey P. Dale, Sep 19 2012 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michel Lagneau, Sep 16 2012
STATUS
approved